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1. Summary

A small study investigated the potential benefits and research challenges related to the software 
components of future space vehicle designs. The study identified two potential research thrusts 
aimed at improving the resilience and reliability of software deployed on space vehicles: (1) 
Improving software resiliency through proactive diversity and (2) reducing costs and schedule 
overruns through automated software repair. Both thrusts rely on recently developed technology 
known as GenProg. GenProg uses genetic programming (GP), an iterated stochastic search 
technique, to search for program repairs. The search space of possible repairs is infinitely large, 
and GenProg employs five strategies to render the search tractable: (1) coarse-grained, 
statement-level patches to reduce search space size; (2) fault localization to focus edit locations; 
(3) existing code to provide the seed of new repairs; (4) fitness approximation to reduce required 
test suite evaluations; and (5) parallelism to obtain results faster. The study focused on auto- 
mated software transformations, for repair and resiliency, because there is extensive prior work 
on the related topics of anomaly detection, intrusion detection and fault isolation, which could 
also be adapted to software in the space vehicles domain. 

2. Introduction

This document constitutes the final report of a one-year study to outline important software 
challenges facing space vehicles, in particular, the challenges of detecting and repairing software 
bugs on deployed vehicles. 

Over the course of this grant we investigated ways that autonomous space vehicles and space 
vehicle software could be designed to sense and respond to software problems. In addition to 
scholarly activities such as publishing and presenting research results, the grant also facilitated 
multiple face-to-face meetings with personnel from the Space Vehicles Directorate at Kirtland 
Air Force Base. 

3. Methods, Assumptions, and Procedures

Space vehicles and satellites are a critical component of our national and commercial 
infrastructures, and their autonomous operation and physical separation present special 
challenges for maintenance and reliability. Modern satellites are complex systems comprised of 
hardware and software, including sensors, actuators, special-purpose operating systems, 
programs and algorithms. These systems are managed using well-established techniques, such as 
on-board sensing, strings of redundant components, and fail-over to “safe mode” for handling 
certain classes of faults. Such techniques help mitigate physical faults caused by environmental 
conditions, such as radiation, and are not directly applicable to software faults. 

Beyond physical faults, software defects are becoming a significant concern for space vehicles. 
For example, a recent billion-dollar deal from the United Arab Emirates to purchase two 
intelligence satellites from France was harmed by the discovery of two “security compromising 
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components” in purchased software that would provide a back door to the  data  transmitted  to  
the  ground station [2, 27]. Software defects, whether malicious or unintentional, are likely to 
become a serious problem in the future, as the complexity and functionality of deployed software 
on space vehicles increases. Given the high cost of a typical Geosynchronous Earth Orbit (GEO) 
satellite and launch vehicle, potential failures arising from software problems are worth 
mitigating. Historical data from 1981–2001 suggest that 9% of satellites fail during their 
operational lives and 4–5% of launch vehicles fail, totaling about one in seven satellites failing 
prematurely [35]. Looking forward, software failures are likely to increase in prominence: A 
June 28, 2012 report by the Department of Homeland Security noted that the number of 
“incidents impacting organizations that own and operate control systems associated with critical 
infrastructure” almost tripled from 2009 to 2010, and then increased by over a factor of four 
between 2010 and 2011, the last year for which complete data are available [15].  

Many popular security and software engineering solutions are targeted for desktop and server 
environments, but modern space vehicles present a different challenge. For example, although 
cloud-based storage and computing has become the norm in personal computing, “stand-alone” 
deployment is typical for space vehicles, with a trusted base station that is not accessible through 
public networks. As a second example, systems are created by trusted assembly methods out of 
custom-made or off-the-shelf components in contrast with open-source or app-store models that 
allow end users to easily combine software from different sources on a single system. Space 
vehicles are designed to continue operating autonomously in the event that contact is lost with 
the ground. This set of design constraints simplifies some problems (e.g., not being on an open 
network reduces the threat of a remote hijacking attack), exacerbates others (expensive and 
intermittent communication with the base station complicates the task of system upgrades or 
emergency repairs), and leaves some problems unchanged (e.g., the threat of malicious “logic 
time bombs” or inadvertent software bugs).  

Unintended bugs affecting the deployed system can leave it unresponsive. Software failures in 
specialized devices have both civilian and military implications, ranging from lawsuits [5] to 
insurgents hacking United States Air Force USAF Predator unmanned aerial vehicle feeds [9].  
Unintended defects are not only possible, but common: To take one popular example, the 
Microsoft embedded Zune media player included a bug that turned devices into unresponsive 
bricks [7] affecting millions of customers [6]. The bug was a relatively simple infinite loop in a 
date calculation algorithm that failed to account for certain leap years. As a result, the devices 
appeared fine during testing but failed after deployment on January 1, 2009. 

Software defects similar to the Zune bug are ubiquitous. The number of outstanding software 
defects typically exceeds the resources available to address them [3].  Mature software projects 
are forced to ship with both known and unknown bugs [23] because they lack the development 
resources to deal with every defect. For example, one Mozilla developer claimed that, 
“everyday, almost 300 bugs appear far too much for only the Mozilla programmers to handle” 
[4]. Once identified, bugs can be challenging to repair, leading to prolonged down time.  On the 
Mozilla project between 2002 and 2006, half of all fixed bugs took developers over 29 days 
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each to fix [14].  This trend is particularly troubling in critical code—in 2006, it took 28 days 
on average for operating system maintainers to develop fixes for security defects [36].   A 
recent Cambridge University study [8] estimates that software bugs cost the global economy 
$312 billion per year and that one-half of software development time is spent on debugging. As 
the costs of faulty software have continued to rise, researchers have begun developing 
automated methods for detecting and repairing software bugs. We believe that this work could 
be adapted to the special software environment of space vehicles. 

4. Results and Discussion

Over the course of this award, we investigated potential software threats to space vehicles and 
identified future technologies to mitigate those threats. Although some satellite software modules 
can be formally verified and assembled in a trustworthy way using off-the-shelf components, and 
stand-alone deployments may have base stations that are inaccessible to public networks, there 
remain several different ways that software can cause downtime or mission failure for space 
vehicles.  Further, this can even occur with the stringent security and deployment policies 
already in place. 

Security defenses adopted by other communities may not be present or used to their fullest 
advantage in space vehicle systems.  For example, digital signatures [30] can be used to verify 
the provenance and untampered nature of code.  Such signatures are common in analogous 
embedded systems.  For example, the Sony Playstation uses digital signatures to guard third-
party games run on its hardware [18]. A second example is “separation of concerns,” which 
involves using modularity and encapsulation to limit the power of software modules and thus 
limit the damage that can be done if that module fails. Such a separation has been identified as a 
way to limit future attacks [29].         

Although these techniques are potentially applicable, space vehicles has several special 
properties that complicate their adoption, such as limited processor speed, reduced memory, 
smaller storage, and power constraints.  Our investigation suggested that three approaches, in 
particular, merit further investigation. 

Sensing at the Software Level. Anomaly/intrusion detection [16] involves using software-and 
hardware-level metrics and sensors to establish a baseline associated with normal performance 
and then note when the current operating profile deviates from that acceptable envelope [12]. 
Many space vehicles already include sensors for anomaly detection at the hardware level, and we 
believe that such systems could be augmented to include sensing and monitoring software. 
Tradeoffs exist between costs, such as operating system support requirements, and coverage, 
such as the number of anomalies sensed and the number of false positives reported. We 
hypothesize that existing expertise in sensing temperature, radiation, battery power and similar 
metrics can be leveraged to help protect software. 
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Autonomous Software Repair. Once a software bug has been detected, either through anomaly 
detection or by manual reporting, it must be fixed. We hypothesize that existing approaches to 
software repair [21, 40] can be leveraged to allow a group of heterogeneous space vehicles 
and/or ground stations to attempt to fix a defect autonomously. We have evidence to suggest that 
such an approach is feasible for commercial off the shelf (COTS) software [21] as well as 
embedded systems [31, 33]. Candidate repairs produced by such techniques can be inspected by 
ground station developers before being deployed. In addition, in critical situations, such as a fault 
in the communication system software, an autonomously produced repair could serve as a last 
line of defense to re-establish communication. 

Proactive Software Diversity. Many space vehicles already include redundant system backups, 
but a backup that uses exactly the same software will be vulnerable to exactly the same bugs [19, 
25]. Our investigation suggests that diverse variants of critical software systems can be created 
automatically that are functionally equivalent but feature different implementations (e.g., 
variable layouts, algorithmic changes, etc.). Such diverse variants present a shifting attack 
surface to bugs or malware [10]. In addition, we have evidence that multiple diverse variants 
created in advance can serve as a shield against unknown future bugs [34]. 

Illustrative Example. To see how these insights might play out and interact in this domain, 
consider the following potential use case. Consider a deployed space vehicle with three strings of 
redundant systems, each of which is slightly different as a result of proactive software diversity. 
When a software bug or piece of malware attempts to influence the first string, that deviation 
from the norm is likely to be sensed at the software level by anomaly/intrusion detection 
techniques. Control can then be transferred to the second string of systems, which are not 
vulnerable to the same bug because of their different attack surface. The second string and the 
ground system can then work together to patch using autonomous software repair, and that fixed 
replacement software can then be uploaded or deployed over the old first string software system. 

Challenges Identified. We held several meetings between the investigators and the space 
vehicles community, and we identified the following challenges for this domain. 

1. Relatively low processing power on the space vehicle and high processing power on
ground. The processors that fly in space are many generations behind state-of-the-art
technology available in the consumer market. This is not surprising given the
extraordinary testing and hardening that must be performed on hardware before
deployment.

2. Separation between operating system and payload software. This provides a possible
opportunity to apply proactive diversity and automated repair methods to the operating
system without interfering with payloads, or vice-versa.

3. Fail-over redundancy structure is already commonly used. This is a stark contrast to
standard desktop computing.

4. Power consumption and heat dissipation matter. Recent results on post-compiler
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optimizations to reduce energy use of software [32] may be applicable to address this 
challenge. 

5. Users desire high reliability, but systems are often assembled near the deadline using off- 
the-shelf-components. An ability to operate through errors using automatic software 
repair methods would help address this challenge. 

6. Users desire high uptime, and a “degraded mode” response to faults may be preferable to
a “fail-stop” response. 

7. Computational resources for sandboxing and evaluating variants (i.e., candidate repairs)
are limited. 

4.1 Technical Approach 

Over the course of this grant and previous awards we have developed a technique for 
automatically repairing software defects in off-the-shelf, legacy programs. We call this approach 
GenProg, and it has scaled to repair defects in software totaling five million lines of code 
guarded by ten thousand test cases [21, 22, 40]. The basic operation of GenProg on desktop 
software is described in Section 4.5, which serves as essential background for understanding 
changes that might be made to apply such a system to space vehicles. 

Key capabilities that are relevant to the space vehicles domain are: (1) the ability to  
automatically repair classes of software bugs that are not pre-specified; (2) the ability to  
generate multiple semantically distinct program variants, each of which meets an existing 
program specification (either formally defined or implicitly defined through test cases); and (3) 
the ability to apply heuristic transformations to compiled code (at the assembly level or binary 
level) to reduce energy consumption, or to improve other nonfunctional software properties. 

4.2 Promising Future Research Directions 

We identified two promising threads for future research: Improving resiliency through proactive 
diversity, and reducing cost through automated repair. 

4.2.1 Basic Research to Improve Resiliency 

To improve the resiliency of software deployed on space vehicles, we propose developing 
proactive software diversity methods that are practical for software systems facing the challenges 
outlined above. We propose to first measure the mutational robustness of the relevant software 
and then develop methods for automatically generating multiple semantically distinct software 
versions. We envision that several of these diverse versions would be deployed on a single space 
vehicle. 

Our approach recognizes that only attackers (e.g., buffer overruns) and software bugs (e.g., 
infinite loops) depend on under-the-hood implementation behavior. For example, while buffer 
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overruns depend strongly on the order in which the compiler lays out variables on the stack, 
legitimate use cases do not, and thus a variant that re-orders the stack may defeat attackers 
without reducing functionality. 

Motivation: Satellite failure rates are too high. 9% of satellites fail during operational lives, and 
4–5% of launch vehicles fail, for a total of about 1-in-7 that fail prematurely [35].  Fail-over 
redundancy for software only protects against transient errors (e.g., radiation bit-flips), but not 
against most program bugs or logic bombs [25]. For example, if third-party COTS software has a 
bug and always fails after January 1, 2009 (as in the infamous Microsoft Zune player), failing 
over to an identical copy results in a system that immediately encounters the same bug. 

Proposed Research Activities: 

1. Develop techniques to automatically generate diverse variants of payload (or control and
payload) software for space vehicles.

2. Develop algorithms to generate software variants that implement the same specification
but have multiple invisible implementation differences “under the hood” (e.g., scanning
left-to- right instead of right-to-left).

3. Construct a system in which multiple generated software variants present a shifting
defensive surface and are vulnerable to different failures. If even one is resilient, the
system can enter safe mode and contact the base station:

(a) For example, consider a situation in which a software defect akin to the “January
1, 2009” Zune bug causes the first-string space vehicle software to fail. If the 
second-string software is not identical, but is instead a variant that uses different 
implementation decisions, failing over to the second-string could resolve the issue 
if the second-string software were immune to the bug (e.g., because it handled the 
date calculation loop differently). 

(b) In addition, such an approach would retain all expected resilience to transient 
“bit-flip”- style errors. 

Why Now, Why Here?  
Space vehicles are an ideal setting to develop proactive diversity techniques, because it is well-
understood that investing in redundancy can avoid some failures, and this trade-off is accepted in 
the community. By contrast, in standard software engineering, companies are rarely willing to 
buy a second or third set of completely redundant hardware. Techniques for generating 
semantically equivalent diverse variants have only recently become available [34]. 
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Basic Research Questions: 

1. How can we automatically and efficiently generate a large number of diverse variants of
a software program? There are three distinct issues to be addressed: (1) Determining what
program representation is most appropriate (abstract syntax trees, assembly code, object
code); (2) determining which mutational operators should be used to generate the
diversity (delete, swap, replace, copy, etc.); and (3) determining how to evaluate if the
variations meet the desired specification (e.g., test cases, formal specifications, user
interaction, etc.).

2. How can we prove (or gain evidence) that these variants are not vulnerable to the same
faults (independent failure modes)? For example, we envision using fault injection
techniques, “time travel” studies of historical data, static analyses techniques, or
predictive fault models.

3. Given that we only have space to deploy k fail-over backups, how should the k variants
be chosen to maximize deployed diversity (i.e., maximize the chance that at least one will
defeat a new fault)? We propose using diversity distance metrics (including advanced
information flow techniques) or clustering algorithms.

4. A more ambitious research topic would investigate how to select variants for diversity
and to minimize power and/or memory use (software-only schemes can reduce software
power use 13–40% [38]).

4.2.2 Basic Research to Reduce Costs and Schedule Overruns 

Software maintenance is an ongoing expense, which could be reduced if some maintenance tasks 
were automated. We propose to focus on repairing bugs in software, first in the pre-deployment 
phase, and as a long-term goal, to repair software that has already been deployed. 

Motivation:   Crafting and validating patches for software bugs can take ground teams weeks to 
months for space vehicles, and the space vehicle payload may be disabled in safe mode while 
awaiting the repair. 

Proposed Research Activities: 

1. Develop and refine techniques to automatically generate software patches using genetic
programming.

2. Design automated repair algorithms such that, by construction, synthesized patches
address the defect while retaining all tested functionality.

3. Generate a diverse set of candidate patches and present them to ground developers:
(a) Previous human studies have demonstrated that developers presented with

machine- generated patches take less time to address defects [39] and that such 
patches can be as readable and maintainable as human-written patches [13]. 

(b) Multiple independent, differently shaped patches will help developers catch all 
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corner cases (e.g., if one patch fixes the definition of foo and another fixes all uses 
of foo, developers can adapt, merge or augment the suggestions). 

(c) Patches can be constructed to minimize verification effort (e.g., favoring patches 
that touch the fewest modules, have minimal change impact, etc.) or otherwise 
integrate well with formal methods [28, 41, 42]. 

4. Develop techniques to use only some of the tests when “brainstorming” candidate patches
and use all of the tests only to verify those that make the final cut before showing them to 
developers. 

Why Now, Why Here?  
Modern hardware (e.g., clusters, cloud computing) is such that computers can now generate and 
evaluate patches faster than humans. Many reported software bugs for space vehicles (e.g., 
crashing, excessive memory usage, infinite loops) are amenable to preliminary single- patch 
genetic programming techniques [22]. In a systematic study, our proposed GenProg approach 
generated a single working patch for 50% of desktop software bugs for one-third the cost of 
human developers [21]. 

Basic Research Questions: 

1. How can we develop benchmark programs and bugs relevant to the space vehicles
community (i.e., where software is meaningfully different from previously studied web
browsers and databases) that will allow us to measure success?

2. How can we generate multiple informative, instructive patches to space vehicle software
defects?

3. How can we generate patches with reduced verification burdens?
4. Can we develop techniques to rapidly construct circumscribed repairs that isolate and

leave available some payload behavior or modules while walling off and shutting down
others? The goal is to develop an expanded safe mode in which some prescribed payload
functions remain usable while awaiting the final patch.

5 Automated Program Repair 

We describe the basic operation of GenProg on desktop software, which serves as essential 
background for understanding the research that would be required to apply such a system to 
space vehicles. 

5.1 Genetic Programming 

GenProg uses genetic programming (GP) [20], an iterated stochastic search technique, to search 
for program repairs. The search space of possible repairs is infinitely large, and GenProg 
employs five strategies to render the search tractable: (1) coarse-grained, statement-level patches 
to reduce search space size; (2) fault localization to focus edit locations; (3) existing code to 
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provide the seed of new repairs; (4) fitness approximation to reduce required test suite 
evaluations; and (5) parallelism to obtain results faster. 

GenProg’s main algorithm takes the form of an iterative loop to construct and evaluate fit 
patches. Fitness is measured by counting the number of test cases passed by a candidate repair. 
The goal is to produce a candidate patch that causes the original program to pass all test cases, 
including those that encode the defect. We represent each candidate patch [1] as a sequence of 
abstract syntax tree (AST) edit operations parameterized by node numbers (e.g., Replace (81, 
44)); see Section 5.2). 

Given a program and a test suite, we localize the fault (Section 5.4) and compute context- 
sensitive information to guide the search for repairs (Section 5.5) based on program structure and 
test case coverage. We evaluate variant fitness (Section 5.3) by applying candidate patches to the 
original program to produce a modified program that is evaluated on test cases. New candidate 
patches are constructed from existing patches via mutation and crossover operators defined in 
Section 5.6 and Section 5.7.  Both generate new patches to be tested. 

The search begins by constructing and evaluating a population of random patches.  We initialize 
a population by independently mutating copies of the empty patch. In each generation (iteration) 
we employ tournament selection [26], which selects from the incoming population, with 
replacement, high-fitness parent individuals. By analogy with genetic “crossover” events, parents 
are taken pairwise at random to exchange pieces of their representation; two parents produce two 
offspring (Section 5.7). Each parent and each offspring is mutated once (Section 5.6) and the 
result forms the incoming population for the next iteration. The GP loop terminates if a variant 
passes all test cases, or when resources are exhausted (i.e., too much time or too many 
generations elapse). We refer to one execution of this algorithm as a trial. Multiple trials may be 
run in parallel, each initialized with a distinct random seed. 

The rest of this section describes additional algorithmic details, including: (1) a patch-based 
representation, (2) large-scale use of a sampling fitness function at the individual variant level, 
(3) fix localization to augment fault localization, (4) and novel mutation and crossover operators 
to dovetail with the patch representation. 

5.2 Patch Representation 

An important GenProg enhancement involves the choice of representation. Each variant is a 
patch, represented as sequence of edit operations (compare to [1]).  It is possible to represent an 
individual by its entire AST combined with a weighted execution path [40], but such an approach 
does not scale to memory-constrained environments. For example, for one- third  of  defects  we  
have  considered  experimentally,  a  population  of  40–80  ASTs  did  not  fit  in 1.7 GB of main 
memory. However, half of all human-produced software patches are 25 lines or less [21]. Thus, 
two unrelated variants might differ by only 2 × 25 lines, with all other AST nodes in common. 
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Representing individuals as patches avoids storing redundant copies of untouched lines. This 
formulation influences the mutation and crossover operators, discussed below. 

5.3 Fitness Evaluation 

To evaluate the fitness of a large space of candidate patches efficiently, we exploit the fact that 
GP performs well with noisy fitness functions [11]. For intermediate calculation, we apply a 
candidate patch to the original program and evaluate the result on a random sample of the tests, 
choosing a different test suite sample each time.  For efficiency, only variants that pass every test 
in the sample are fully tested on the entire test suite. The final fitness of a variant is the sum of 
the number of tests that are passed. 

5.4 Fault Localization 

GenProg focuses repair efforts on statements likely to be implicated in the defect. Such fault 
localization approaches are well-established in software engineering [17].  For a given program, 
defect, set of tests T, test evaluation function Pass: T → B, and set of statements visited when 
evaluating a test Visited: T → P(Stmt ), we define the fault localization function faultloc : Stmt 
→ R to be:  

   0    ∀t ∈ T. s /∈ Visited (t) 
faultloc(s) =  1.0    ∀t ∈ T. s ∈ Visited (t) =⇒ ¬Pass(t) 

0.1    otherwise 

That is, a statement never visited by any test case has zero weight, a statement visited only on a 
bug-inducing test case has high (1.0) weight, and statements covered by both bug-inducing and 
normal tests have moderate (0.1) weights (this strategy follows previous work [40, Sec. 3.2]). 
Other fault localization schemes could be employed directly by GenProg [24]. 

5.5 Fix Localization 

We introduce the term fix localization (or fix space) to refer to the source of 
insertion/replacement code, and explore ways to improve fix localization beyond blind random 
choice. As a start, we restrict inserted code to that  which  includes  variables  that  are  in-scope  
at  the  destination  (so the result compiles) and that are visited by at least one test case (because 
we hypothesize that certain common behavior may be correct).  For a given program and defect 
we define the function fixloc : Stmt → P(Stmt ) as follows: 

fixloc(d) =   s ∃t ∈ T. s ∈ Visited (t) ∧ 
VarsUsed (s) ⊆ InScope(d) 

The fix localization function just defined helps to ensure that candidate patches are well-formed: 
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in our experiments, more than 90% of candidates compile correctly. 

5.6 Mutation Operator 

We consider three mutation operators: delete, insert and replace. In a single mutation, a 
destination statement d is chosen from the fault localization space (randomly, by weight). With 
equiprobability GenProg either deletes d (i.e., replaces it with the empty block), inserts another 
source statement s before d (chosen randomly from fixloc(d)), or replaces d with another 
statement s (chosen randomly from fixloc(d)). Inserted code is taken exclusively from elsewhere 
in the same program. This decision reduces the search space size by leveraging the intuition that 
programs contain the seeds of their own repairs. 

5.7 Crossover Operator 

The crossover operator combines partial solutions, helping the search avoid local optima. Our 
new patch subset crossover operator is a variation of the well-known uniform crossover operator 
[37] tailored for the program repair domain. It takes as input two parents, p and q, represented as 
ordered lists of edits (Section 5.1). The first (resp. second) offspring is created by appending p to 
q (resp. q to p) and then removing each element with independent probability of one-half. This 
operator has the advantage of allowing parents that both include edits to similar ranges of the 
program (e.g., parent p inserts B after A and parent q inserts C after A) to pass any of those edits 
along to their offspring. Previous uses of a one-point crossover operator on the fault localization 
space did not allow for such recombination (e.g., each offspring could only receive one edit to 
statement A). 

5.8 Binary and Assembly Repairs 

The initial versions of GenProg focused on abstract syntax tree representations of C programs. 
More recently, we have developed a prototype implementation for the Low Level Virtual 
Machine (LLVM) compiler suite where the program is represented using LLVM’s 
intermediate representation, and the operators are defined over the intermediate representation. 

We have also developed technology for compiled (ARM and x86 assembly) and linked Execute 
and Linkable Format (ELF) binary programs [33, 31]. The new representations allow repairs 
when source code cannot be parsed into ASTs (e.g., due to unavailable source files, complex-
build procedures, or non-C source languages). They also reduce memory and disk requirements 
sufficiently to enable repairs on resource constrained devices. 

Relevant to the space vehicles domain, our techniques have been shown to reduce memory 
requirements by up to 85%, disk space requirements by up to 95%, and repair generation time up 
to 62%, which enables application to resource-constrained environments. 
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These techniques constitute the first general automated method of program repair applicable to 
binary executables and are an important first step towards on-board repair of software defects on 
space vehicles where memory and computation resources are limited. 

6 Conclusion 
This report describes the work of a short preliminary study to explore the challenges of sensing 
and repairing software defects in autonomous systems. We focused on the repair challenge 
because there is extensive prior work on anomaly detection, intrusion detection, and fault 
isolation which could be adapted to this domain. 

We identified two promising areas for future research projects and outlined our thoughts about 
how best to pursue them: (1) Improving software resiliency through proactive diversity and (2) 
reducing costs and schedule overruns through automated software repair. 
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LIST OF ACRONYMS 

ARM 
AST 
COTS 
ELF 
GenProg/GP      
GEO 

LLVM  
USAF 
X86 

Abstract Rewriting Machine (also a compiler infrastructure) 
Abstract Syntax tree 
Commercial of the Shelf  
Executable and Linkable Format 
Genetic Programming 
Geosynchronous Earth Orbit 
Low Level Virtual Machine (this is a compiler infrastructure) 
United States Air Force 
Family of backward compatible instruction set architectures based on the  
Intel 8086(Intel Corp part number) central processing unit  
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